Sign Up To The Newsletter

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet

    Científicos consiguen ‘parar el tiempo’

    Investigadores de ETH Zurich han atrapado una pequeña esfera que mide cien nanómetros usando luz láser y han ralentizado su movimiento al estado mecánico cuántico más bajo

    Redacción

    Científicos suizos han conseguido ‘parar el tiempo’ con una esfera oscilante de 10 millones de átomos que mide cien nanómetros. Con ello han observado en un instante mágico los efectos cuánticos a escala macroscópica, proceso que se rige por leyes físicas diferentes de las de las partículas elementales. El resultado obtenido ayudará a comprender mejor la mecánica cuántica, acercándola aún más al tamaño macroscópico y posibilitando así el desarrollo de nuevas tecnologías.

    Los fenómenos cuánticos macroscópicos intrigan a los físicos desde que se conocen las propiedades de la naturaleza a escala de átomos y partículas subatómicas. Se sitúan entre los fenómenos más relevantes de la física, según informa la web científica Tendencias21.

    Los efectos cuánticos prevalecen a escala atómica y de las partículas subatómicas: ponen de manifiesto que, a esos niveles de la realidad, materia y energía se confunden debido a la dualidad onda-partícula. Adoptan comportamientos extraños que escapan a la física clásica.

    Esfera utilizada por los científicos. / Foto: ETH Zurich.

    Esos efectos cuánticos solo se aprecian en los electrones y en otros componentes físicos más pequeños. Sin embargo, en un laboratorio se pueden crear condiciones para obtener efectos cuánticos en objetos macroscópicos: la mayoría de las veces, se ha logrado con nubes de millones de átomos.

    Hasta ahora se ha conseguido apreciar fenómenos cuánticos macroscópicos en la superfluidez (descubierta en 1937) o en la superconductividad (descubierta en 1911), y también en los estados topológicos de la materia.

    Este año se ha logrado además el entrelazamiento cuántico, que permite a dos partículas elementales distantes entre sí compartir un estado cuántico común, en tambores vibratorios fabricados con dos membranas de aluminio de unos 10 micrómetros de longitud (un micrómetro equivale a una milésima parte de un milímetro).

    Ahora, investigadores de la Escuela Politécnica Federal de Zúrich (ETH Zurich) han conseguido otro hito en la carrera por conocer cómo se desenvuelven los procesos cuánticos a escala macroscópica: llevaron una esfera de vidrio hasta el límite cuántico y observaron los fenómenos cuánticos que se producían en su interior.

    La esfera medía cien nanómetros, lo que significa que es mil veces más pequeña que el grosor de un cabello humano. Es pequeña para nuestra percepción, pero enorme para los niveles físicos elementales porque consta de 10 millones de átomos.

    Fuente: Tendencias21.